The General Secretariat for the Conservation of The Arabian Oryx

MIDDLE EAST
ARABIAN ORYX
DISEASE SURVEY
3rd Edition
Authors:
Louis Lignereux, Nessrine Alzahlawi, Yassir Hamdan AlKharusi & Maria Elena Pesci

The General Secretariat for the Conservation of the Arabian Oryx (GSCAO) was established in 2000 as a regional initiative with a key role of supporting all efforts to protect and conserve the Arabian Oryx, to agree regional criteria and standards, and to coordinate efforts between range states.

This study has been generously funded by the Environment Agency - Abu Dhabi (EAD)

Year of Publication: 2018
Published by:
Environment Agency - Abu Dhabi (EAD)
P.O Box 45553 Abu Dhabi
Tel: +971 2 693 4664
Email: info@arabianoryx.org

An electronic copy of this report is available for download at www.arabianoryx.org

Copyright © 2018 Environment Agency - Abu Dhabi
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, electrostatic, magnetic, tape, mechanical, photocopying, recording, scanning, or otherwise, without permission in writing from the publisher.
LIST OF FIGURES

Figure 1 – Number of Arabian Oryx surveyed in the different editions of the disease surveys between 1999 and 2015 ... 15
Figure 2 – Percentage of Arabian Oryx in each management category (n=12879) ... 18
Figure 3 – Distribution of male to female and adult to juvenile Arabian oryx in the 2015 population 19
Figure 4 – Number of collections using several record keeping systems .. 20
Figure 5 – External observation of a young Arabian Oryx suspected suffering from skin lesions that could have been attributed to hypodermosis (warble fly) .. 27
Figure 6 – Shaved hair on the same animal showing no evidence of subcutaneous and cutaneous lesion, hypodermosis was therefore not suspected .. 27
Figure 7 – Percentage of vaccinated Oryx in 2015 and vaccines used, on surveyed population 31
Figure 8 – Number of sites doing tests (n=51) ... 35
Figure 9 – Percentage of sites according to distance to domestic livestock .. 38

ABBREVIATIONS

AO: Arabian Oryx
BTB: Blue Tongue Virus
CCPP: Contagious Caprine Pleuro Pneumonia
EAD: Environment Agency – Abu Dhabi
EHDV: Epizootic Hemorrhagic Disease Virus
FMD: Foot and Mouth Disease
GSCAO: General Secretariat for the Conservation of the Arabian Oryx
KWRC: King Khalid Wildlife Research Center
NWRC: National Wildlife Research Center
OIE: Office International des Epizooties = World Organisation for Animal Health
PPR: Peste des Petits Ruminants
TB: Tuberculosis
UAE: United Arab Emirates
DEFINITIONS

The below definitions were developed and included to serve the purposes of the questionnaire.

Reintroduced herd into the wild

- The herd is free-ranging.
- The herd lives on natural resources and does not require supplementation.
- The herd’s diet is not supplemented with food artificially.
- It occurs in its natural habitat within the historical distribution range of the particular species.
- The particular species’ social requirements are met at all times.

Managed population

- It is free-ranging (managed wild population) or semi free-ranging.
- It lives on food from natural resources which may require supplementation.
- It occurs in its natural habitat within the historical distribution range of the particular species.
- The particular species’ social requirements are met at all times.

Captive-bred population

A population bred under controlled unnatural conditions is considered to be captive bred.

Dystocia

Dystocia is a pathologic or difficult labor, which may be caused by an obstruction or constriction of the birth passage or abnormal size, shape, position, or condition of the fetus. This condition usually requires human intervention.

Stillbirth

Stillbirth is a delivery of a fully formed dead neonate.

Abortion

Abortion is a premature expulsion from the uterus of the products of conception; termination of pregnancy before the fetus is viable. Most of the time, an early abortion will not be noticed at all. When an abortion occurs during the last stage of pregnancy it can be confused with a stillbirth. Some abortions can also cause dystocia, for instance when the fetus is decaying within the uterus and becomes swollen.
The General Secretariat for the Conservation of the Arabian Oryx (GSCAO) supported by the Environment Agency - Abu Dhabi (EAD) initiated this third edition of the regional disease survey of the Arabian Oryx following very positive responses from the 2011 and 2013 editions of this survey (published in 2013 and 2015 respectively) and the excellent support from the range states. Previous editions of Arabian Oryx disease surveys can be found and downloaded at www.arabianoryx.org.

Epidemiological challenges require a multidisciplinary holistic approach including but not limited to: emerging diseases threat, epidemiological networks (National Governmental entities and International Organizations: World Organization for Animal Health -OIE), interactions between livestock and wildlife, etc.

Notification of infectious diseases to competent national authorities is a precondition for any successful animal disease control plan at national and international levels. This survey supports knowledge sharing and communication in an effort to control and manage common conditions and diseases to ensure the welfare and conservation of this iconic species.

The information contained in this report is based on the responses submitted by each private or government-owned Arabian Oryx collection. The responses have been reviewed and analysed by a team of experts and veterinarians working with and supporting the General Secretariat for the Conservation of the Arabian Oryx. This report would not have been possible without the interest and contribution from the participating collections across the range states. We hope that veterinarians and non-veterinarians will find this report informative and helpful to promote best practices in veterinary management of Arabian Oryx in the range states.

SUMMARY OF KEY FINDINGS

1. INTRODUCTION

The response rate for this third edition of the Middle East Arabian Oryx Disease questionnaire was 88%, with a total of 26 collections participating in the survey, sites.

A total of 12,879 Arabian Oryx across the range states were covered in this disease survey. The numbers of Arabian Oryx recorded in the UAE represented 79.24% of the total numbers of Arabian Oryx covered in this survey.

Forty nine (49%) of the recorded Arabian Oryx in this survey are categorized as captive-bred, while 23% are considered managed populations and 28% as released into the wild.

As far as record keeping is concerned, Excel is the most common system used by Arabian Oryx collections (20 out of 43) covered in this study.

Traumatic injuries, old age, mismothering and an outbreak of enterotoxaemia in a single location, were the reported principal causes of death.

Limited numbers of Arabian Oryx surveyed are vaccinated. Twenty eight percent (28%) of the surveyed Arabian oryx are vaccinated against Foot and Mouth disease and Enterotoxemia and 24% percent of them receive some sort of vaccination against PPR (FIG). Oryx that are released in the wild are left unvaccinated.

Veterinarians and collection managers are encouraged to share information, and help increase the understanding and knowledge of those diseases affecting wild animal collections wherever possible.
2. SURVEY METHODOLOGY

The survey questionnaire was designed to collect as much information as possible about the Arabian Oryx diseases for the period from January to December 2015. It was sent to different collections in the range states through GSCAO’s national focal points and conservation managers of wildlife collections. It was circulated as an electronic format via e-mail and as a hard copy through the post. The questionnaire consisted of three key sections that included demographic information on the Oryx population in the collection, information on infectious and non-infectious diseases as well as prophylactic procedures. It was found that many veterinarians and conservation managers prefer to have the questionnaire in a Word format to complete the questionnaire.

The questionnaire was sent in June 2016 to focal points in relevant organizations and institutions across the Middle East. The goal was to reach a maximum number of collections, both governmental and private, holding Arabian Oryx. The last response was received in late 2016. This report was based on the direct answers from the veterinarians and collections managers of participating Oryx institutions.

In some cases, it was difficult to distinguish between a collection and a site. Collection refers to a common management system while sites refer to geographically separated herds, under the same management. This distinction was clarified through greater communication and coordination with collections managers, who accurately determined to which site or collection the response referred to. Whenever the answers to the questionnaire were referring to enclosures belonging to the same site, they were merged together and considered as one site in Table 1 for clarity and consistency with previous surveys.

In some cases, one single questionnaire was completed for multiple sites falling under the same management. Those sites should be in the future considered as separate collections, and have their own questionnaires answered separately. Whenever a single completed questionnaire covering several sites was received, the information provided in the response was applied to all sites or collections covered by the same survey form, unless details were provided specifying the differences amongst various sites (such as the owner, individual marking of the Oryx, record keeping, distance to livestock, etc...).
3. SURVEY OBJECTIVES

The third edition of the regional Arabian Oryx disease survey was reinitiated upon recommendations of the Arabian Oryx workshops held throughout 2015-2016, following requests from collection managers and veterinarians confirming the benefit and utility of sharing information on common conditions and diseases and recommended screening and treatment protocols.

The key objectives of this regional disease survey are to:

• Maintain a network of people involved in the conservation of this species and draw up an exhaustive list of the Arabian Oryx collections in the Middle East
• Obtain an updated and accurate total number of Arabian Oryx throughout the Arabian Peninsula, along with demographic parameters
• Help to improve the genetic diversity of captive or semi-captive populations by promoting and facilitating animal exchange
• Limit the risks associated with zoonotic diseases and other infectious diseases affecting this species, by helping and supporting the establishment of guidelines and protocols
• Conduct a gap-analysis on the veterinarian aspects of Arabian Oryx management
• Assess the risks that could compromise the long term sustainability and conservation of this emblematic species
• Review the literature to provide updated information on the topic.

4. RESPONSE RATE

Thirty-three questionnaires were sent across the Middle East and 29 answers were returned. The return rate was therefore excellent at 88%.

This survey covered eight countries (Bahrain, Jordan, Oman, Saudi Arabia, Syria, United Arab Emirates and Yemen), with 30 collections and 57 sites. This represents a 20% increase in participation compared to the previous edition, when 25 collections representing 54 sites responded to the survey.

Two new collections that were not surveyed previously are now included in this report.

Table 1 shows the list of collections and related sites that participated in the survey.
Table 1

List of collections and sites which participated in this 3rd edition of the regional Arabian Oryx Disease Survey

<table>
<thead>
<tr>
<th>COUNTRY</th>
<th>COLLECTION</th>
<th>SITE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bahrain</td>
<td>Supreme Council for Environment</td>
<td>Al Areen Wildlife Park 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Al Areen Wildlife Park 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hawar Island</td>
</tr>
<tr>
<td>Jordan</td>
<td>Royal Society for the Conservation of Nature</td>
<td>Shaumari Wildlife Reserve</td>
</tr>
<tr>
<td>Oman</td>
<td>Office for Conservation of Environment; Dawn of Royal Court - Al Wusta Wildlife Reserve (WWR)</td>
<td>WWR Jaaluni - enclosures</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WWR Jaaluni - reserve</td>
</tr>
<tr>
<td></td>
<td>Oman Wild Animals Breeding Center; Royal Court Affairs</td>
<td>Open Site</td>
</tr>
<tr>
<td></td>
<td>Wildlife Rehabilitation and Breeding Center - Bara</td>
<td>Wildlife Rehabilitation and Breeding Center - Bara</td>
</tr>
<tr>
<td>Saudi Arabia</td>
<td>Saudi Wildlife Authority</td>
<td>King Khalid Wildlife Research Center (KKWRC) - Thuwarat</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mahazat al - Sayed Protected Area</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prince Saud Al-Faisal Wildlife Research Center (PSAFWR) - ‘Taf</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Private Collection Unit (PCL) and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wildlife Rescue Center (Thumrait)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Urq Bani Mar’ard Protected Area</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Private Collections</td>
</tr>
<tr>
<td>Syria</td>
<td>General Commission for Bada Management and Development and Protection Areas-Palmyra</td>
<td>Al Tallia Natural Reserve</td>
</tr>
</tbody>
</table>

United Arab Emirates

<table>
<thead>
<tr>
<th>COLLECTION</th>
<th>SITE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al Ain Zoo</td>
<td>Al Ain Zoo</td>
</tr>
<tr>
<td>Al Ajban</td>
<td>Al Ainian</td>
</tr>
<tr>
<td>Jordan</td>
<td>Al Khaima</td>
</tr>
<tr>
<td>Arabian Oryx Collection - Barari</td>
<td>MBZO - Al Ain Captive bred</td>
</tr>
<tr>
<td></td>
<td>MBZO - Al Ain Managed population</td>
</tr>
<tr>
<td>Oman</td>
<td>Bara Yan Island - Barari (BIC)</td>
</tr>
<tr>
<td></td>
<td>Arabian Wildlife Park</td>
</tr>
<tr>
<td></td>
<td>SBRY 3 enclosures</td>
</tr>
<tr>
<td>Syria</td>
<td>Bida Bin Ahmad Farm - Barari</td>
</tr>
<tr>
<td></td>
<td>Bida Bin Ahmad Farm</td>
</tr>
<tr>
<td>Saudi Arabia</td>
<td>EAD - Forestry management</td>
</tr>
<tr>
<td></td>
<td>Al Khaliya</td>
</tr>
<tr>
<td></td>
<td>Al Qatif Forest</td>
</tr>
<tr>
<td></td>
<td>Al Wahabi Forest</td>
</tr>
<tr>
<td></td>
<td>Bu Hiran Forest</td>
</tr>
<tr>
<td></td>
<td>Ghantot 1 Forest</td>
</tr>
<tr>
<td>Syrian</td>
<td>EAD - Ex Situ Conservation</td>
</tr>
<tr>
<td></td>
<td>Al Fayy Detrehaha</td>
</tr>
<tr>
<td>Syrian</td>
<td>EAD - Protected Areas Department</td>
</tr>
<tr>
<td></td>
<td>OAPA Union Al Zonsai</td>
</tr>
<tr>
<td></td>
<td>Qsar Al Sarab Protected area</td>
</tr>
<tr>
<td>Syrian</td>
<td>Mawardi (Management for Nature Conservation)</td>
</tr>
<tr>
<td></td>
<td>Abu Al Abyad</td>
</tr>
<tr>
<td>Syrian</td>
<td>Al Ain</td>
</tr>
<tr>
<td>Syrian</td>
<td>Al Wahiba</td>
</tr>
<tr>
<td>Syrian</td>
<td>Total Resort</td>
</tr>
<tr>
<td></td>
<td>Bu Arta / Al Naam Holding Facility</td>
</tr>
<tr>
<td>United Arab Emirates</td>
<td>Wrsan Wildlife Division - Al Ain</td>
</tr>
<tr>
<td>Abu Dhabi</td>
<td>6 enclosures</td>
</tr>
</tbody>
</table>
5. SURVEY RESULTS

5.1 TOTAL NUMBER & REGIONAL DISTRIBUTION

The total number of Arabian Oryx surveyed was 12,879 individuals, compared to 9706 Oryx in the previous edition of the survey, representing a 33% increase in the total number of individual Oryx included in this disease survey. According to GSCAO’s own records versus those provided in previous surveys, the number of both individual Arabian Oryx and number of collections surveyed increased consistently through the different editions of the survey since it was first initiated in 1999 (Fig.1). The increase in the number of animals is due to new collections participating in the survey as well as the successful breeding of Arabian Oryx within the collections. The majority (79.24%) of Arabian Oryx in the region are found in the United Arab Emirates.

![Figure 1](image-url) - Number of Arabian Oryx surveyed in the different editions of the disease surveys between 1999 and 2015.
Table 2. Total population sizes of the Arabian Oryx collections surveyed in this edition

<table>
<thead>
<tr>
<th>Country</th>
<th>Number of Arabian Oryx recorded during the 2015 disease survey</th>
</tr>
</thead>
<tbody>
<tr>
<td>UAE</td>
<td>10205</td>
</tr>
<tr>
<td>Saudi Arabia</td>
<td>1379</td>
</tr>
<tr>
<td>Oman</td>
<td>1033</td>
</tr>
<tr>
<td>Bahrain</td>
<td>171</td>
</tr>
<tr>
<td>Jordan</td>
<td>60</td>
</tr>
<tr>
<td>Syria</td>
<td>30</td>
</tr>
<tr>
<td>Yemen</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 2. Total population sizes of the Arabian Oryx collections surveyed in this edition

5.2 POPULATION CATEGORIES
The definitions of different population categories were described in the questionnaire as per the below table, differentiating the various management approaches and collection types amongst surveyed collections in the region. Figure 2 represents the percentage of Arabian Oryx in each management category as per the data provided in this edition of the survey.

<table>
<thead>
<tr>
<th>Reintroduced Herd into the wild</th>
<th>Managed Population</th>
<th>Captive-bred</th>
</tr>
</thead>
<tbody>
<tr>
<td>• The herd lives on natural resources and does not require supplementation.</td>
<td>• It is free-ranging (managed wild population) or semi-free ranging.</td>
<td>A population bred under controlled unnatural conditions is considered to be captive bred.</td>
</tr>
<tr>
<td>• The herd’s diet is not supplemented with food artificially.</td>
<td>• It lives on food from natural resources which may require supplementation.</td>
<td></td>
</tr>
<tr>
<td>• It occurs in its natural habitat within the historical distribution range of the particular species.</td>
<td>• It occurs in its natural habitat within the historical distribution range of the particular species.</td>
<td></td>
</tr>
<tr>
<td>• The particular species’ social requirements are met at all times.</td>
<td>• The particular species’ social requirements are met at all times.</td>
<td></td>
</tr>
<tr>
<td>• The herd is free-ranging.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reintroduced Herd into the wild
Al Marmoum Reserve in the UAE, Al Wusta Wildlife Reserve in Oman, Uruq Bani Ma’arid Protected Area in Saudi Arabia are collections that considered themselves as being released into the wild, with a total number of 3575 Arabian Oryx (28% of all surveyed Oryx).
Managed Population
Twelve collections managing a total of 19 sites described themselves as managed populations with a total number of 2963 individuals (23% of all Oryx numbers in total). Arabian Oryx in these collections are housed in semi-wild conditions with food and water provided either on a daily basis or during drought. These collections include: Abu Dhabi Forestry (5 sites), Telal Resort, MBZO Arabian Oryx collection, Sir Bani Yas Arabian Wildlife Park, Lefod Conservation, CCDR, in the UAE; Al Areen Wildlife Park 1, Hawar Island in Bahrain; Mahazat as Sayd protected Area in Saudi Arabia; Shaumari Wildlife Reserve in Jordan; Al Talila Natural Reserve in Syria. The average size is 17.4 Arabian Oryx per site in this category, ranging from 4 to 835.

Captive-bred
A total of 6341, representing 49% of the total number of Oryx recorded in this survey, are captive-bred individuals. This represented 21 collections managing a total of 31 different sites.

5.3 SEX AND AGE RATIO
Within the adult population of known sex, the sex ratio is 83 adult males per 100 adult females. The juvenile population represents 11.66% of the population of known age (Fig 3).
5.4 RECORD KEEPING
The two record keeping systems used the most remain Microsoft Excel and ZIMS, Excel having over twice as many users as ZIMS (Fig 4). Nineteen collections out of 30 are using only one type of record keeping system, six collections are using 2 systems, one collection 3 systems and one collection 4 record systems at the same time.

6. REPORTED PATHOLOGIES IN 2015

6.1 Bacterial Diseases

Subcutaneous Abscess
Forty eight cases of subcutaneous abscess were documented, leading to euthanasia in one case.

Anaplasmosis
One collection in Oman reported 2 Oryx affected by anaplasmosis out of 27 animals, with one casualty.

Actinomycosis or Lumpy Jaw
One collection in the UAE reported one case confirmed by the culture of Actinomyces bovis.

Brucellosis
Brucellosis cases were reported in UAE: Thirty individual cases were reported in 2 collections from the UAE: one collection reported 16% of their population being positive to Rose Bengal Test (RBT) and all those 29 animals were euthanized. The second collection reported one single positive RBT and brucellosis confirmed by ELISA.

On the other hand, there were reports of absence of brucellosis:
In Saudi Arabia, 77 animals were tested using Rose Bengal Test (RBT) and all came back negative, without mentioning the percentage of animals tested in the collection. Another two collections in the UAE tested 10 animals each (out of 20 in one case, but out of 113 in the other case that might not be considered as statistically relevant). Rose Bengal Test is the OIE reference test for international animal trade. It requires limited equipment, and is relatively inexpensive. The test is also available in some countries in the Middle East. Like with any other tests, the size of the population that is sampled is paramount and must be statistically significant. Nevertheless, it has some limitations:

1. The test might give false positive results due to cross reactions with other bacteria sharing the same LPS (Lipo Poly Saccharide) on their membrane among them the most common are: Yersinia sp, certain E.coli, certain Salmonella sp (Díaz et al., 2011). Confirmatory tests should therefore be performed whenever an animal is positive to RBT.

2. The test might also give false negative results in herds with elevated brucellosis prevalence, especially in sexually immature females.

Figure 4 – Number of collections using several record keeping systems.
Whenever possible, culture, isolation, sero- and geno-typing of the pathogen should be performed for the epidemiological information it will provide such as the species of brucellosis involved: B. abortus or B. melitensis. The genotypist will give the ability to trace the source of infection and eventually shows where the bacterium goes.

The test and slaughter strategy to control the disease requires discussion when it comes to endangered species, and a proactive vaccination strategy might be preferred. As Godfrid wrote in (Godfrid et al., 2013) it is time to move away from improvisation. For instance, in domestic small ruminants, a prevalence higher than 2% will call for a control strategy based on vaccination. That said, it is important to scientifically assess both the parameters of the tests in this species and the vaccines, for their effectiveness and the side effects they might have. Brucellosis was described affecting the Arabian Oryx in (Ostrowski et al., 2002). Brucellosis is an OIE listed zoonosis, having debilitating effects on the people in (Ostrowski et al., 2002). Brucellosis is an OIE listed disease.

Bovine Tuberculosis

There were reports from the UAE, where one collection mentioned finding a suspicious case based on post mortem that was not followed by a RT-PCR positivity, and another collection declared finding 9 reactors and 32 doubtful animals out of 127 animals tested, based on single comparative cervical intradermal test (SCCIT). It must be noted that this classification into non-reactor, doubtful and reactor is based on the differences in measurements before and 3 days after intradermal injection of avian and bovine tuberculin purified protein derivative (PPD). Four animals that reacted, were euthanized to carry out postmortem examination. The findings were consistent with early bovine tuberculosis infection, showing very small (between 1 and 3 millimeters) pulmonary lesions in very limited number, looking like small hemorrhages with a darker center or showing a pale grayish center. This report also mentioned that such small lesions required paying very close attention during the necropsy. RT-PCR was positive for Mycobacterium bovis but culture was unsuccessful. A third collection in the UAE reported testing three quarters of their Arabian Oryx collection (n=33) using skin test and serology material but also pathogeny.Whenever possible, culture should be performed for the epidemiological information it will provide such as the species of brucellosis involved: B. abortus or B. melitensis. The vaccine strain involved, or on the serological test used. We do not have details on the Mycoplasma species involved, or on the serological test used.

Contagious Caprine Pleuropneumonia (CPPP) was documented in the past in Arabian Oryx (Chaber et al., 2014) and there seems to be some issues with the commercial vaccines found against this disease (see later chapters in this report). It must be noted that this disease was due to Mycobacterium orygis, also called “oryx bacillus”, technically different from Mycobacterium bovis (Pittius et al., 2012), (Mostowy et al., 2005) but still part of the “Mycobacterium tuberculosis” Complex (MTC) (Ingen et al., 2012) whose members share not only close genetic similarities but also pathogeny.

Whenever possible, culture, isolation, sero- and geno-typing of the pathogen should be performed for the epidemiological information it will provide such as the species of brucellosis involved: B. abortus or B. melitensis. The genotypist will give the ability to trace the source of infection and eventually shows where the bacterium goes.

Listeriosis

One collection in the UAE reported one case of death due to Listeria sp, confirmed by culture.

Corynebacterium

One collection in the UAE reported Corynebacterium pyogenes and Corynebacterium renale, affecting 2 Oryx and killing 1.

Other Bacterial Diseases

Enteritis

Whether the diarrhea was from bacterial origin or not, “enteritis” was reported under “other non-infectious pathologies”. A total of 47 cases were recorded: 37 calves were affected in Oman and 12 died, and the UAE reported 10 cases. Salmonella enteriditis was cultured in one collection in the UAE. Whether enteritis is affecting the calf population, further investigation to identify the pathogen would be recommended in order to establish tailored vaccination protocols for the pregnant females.
6.3 Parasitic and Fungal Diseases

Helminthiasis

Helminthiasis was reported in several countries but information is sometimes difficult to extract. For instance, in the UAE, one collection reported one case of infestation by *Nematodirus* sp, another collection reported 2-3% of animals infested by *Strongyloides* and a third collection declared 70% positivity on fecal flotation, without mentioning the parasite species involved. In Oman, 22 cases were infested by helminths.

Hydatidosis

One collection in the UAE reported one case of hydatidosis found during necropsy. While this term is specific to the infestation due to *Echinococcus* sp, there was no mention of the species and it could well have been *Taenia saginata*. Distinction between those two parasites is important as one uses members of the canid family as definite host and is a deadly disease for affected people, while the other tapeworm species will transmit through human’s dejections to infest ruminants species. Hydatidosis is a zoonotic disease and an OIE-listed disease.

Coccidiosis and Cryptosporidiosis

In Oman, 18 cases were reported with 5 dead calves. One collection in Saudi Arabia tested 77 animals and found coccidia in 4 fecal samples (5%). Another collection in the UAE reported 2 cases of coccidiosis and one case of cryptosporidiosis. A second collection mentioned one fatal case, a third collection experienced 5 deaths due to *Eimeria* sp; and a fourth collection claimed 70% of positivity based on fecal flotation.

Entamoeba

One single fatal case was reported in one collection in the UAE. This case would be interesting to document as *Entamoeba* is a common parasite of primates (both human and non-human), less frequent in dogs and cats, and rare in other mammals.

Septical Omphalitis:

Three calves died in one collection in the UAE.

Pneumonia:

Three collections in the UAE reported pneumonia: one collection had 3 lethal cases, another one had one case (without reporting the death), and the third collection reported 3 animals affected with 2 dead, where *Staphylococcus* sp was cultured. More details on bacterial species, if any, were given. *Pasteurella multocida*, *Manheimia hemolytica* and *Mycoplasma capricolum* capripneumonaeae are part of the differential diagnosis for pneumonia in this species.

Colisepticemia

The disease affected 4 animals in the UAE.

6.2 Viral Diseases

Foot and Mouth Disease (FMD)

Three FMD outbreaks affecting Arabian Oryx populations were reported in 2015:

One private collection in Saudi Arabia reported a FMD outbreak, affecting 32 animals and killing 21 (65% of the population). The diagnostic test used was ELISA.

Two outbreaks were reported in the UAE: one collection reported that all the 44 animals were affected and 12 died (27% of the population). The case was first confirmed by serology and PCR, followed by sero- and genotyping in OIE reference laboratory (Pirbright, UK). The serotype was O, the most frequent in the region. Another collection holding 210 Oryx mentioned losing 30 animals due to the disease (12.5% of the population).

From those reports, it appears that FMD is a deadly disease for the Arabian Oryx, with mortality rates ranging between 12.5 and 65% of the affected population. The epidemiological role of the Arabian Oryx is still unknown which calls for further studies. It should be emphasized that the immunity provided by all commercially available FMD vaccines is short and protocols require a second injection after 3 to 4 weeks, followed by a biannual booster to be effective, considering the batch of vaccine injected was specific to the circulating strains but also scientifically assessed and approved beforehand by official bodies.

This makes it a challenge to effectively protect this wildlife species. FMD is an OIE listed disease.

Lumpy Skin Disease and related

The disease was suspected in one single individual in the UAE.

No further details were provided. Lumpy skin disease, sheep pox and goat pox infections are all OIE-listed diseases.

6.3 Parasitic and Fungal Diseases

Helminthiasis

Helminthiasis was reported in several countries but information is sometimes difficult to extract. For instance, in the UAE, one collection reported one case of infestation by *Nematodirus* sp, another collection reported 2-3% of animals infested by *Strongyloides* and a third collection declared 70% positivity on fecal flotation, without mentioning the parasite species involved. In Oman, 22 cases were infested by helminths.

Hydatidosis

One collection in the UAE reported one case of hydatidosis found during necropsy. While this term is specific to the infestation due to *Echinococcus* sp, there was no mention of the species and it could well have been *Taenia saginata*. Distinction between those two parasites is important as one uses members of the canid family as definite host and is a deadly disease for affected people, while the other tapeworm species will transmit through human’s dejections to infest ruminants species. Hydatidosis is a zoonotic disease and an OIE-listed disease.

Coccidiosis and Cryptosporidiosis

In Oman, 18 cases were reported with 5 dead calves. One collection in Saudi Arabia tested 77 animals and found coccidia in 4 fecal samples (5%).
Warble Fly or Hypodermosis

Hypodermosis was reported in 3 collections in the UAE: one collection had 2 cases and the other two collections experienced the disease in 5% of their population. One collection in Oman also suspected the disease to affect the calves after the rain. One collection in the UAE reported having external signs compatible with hypodermosis, in a large portion of its Arabian Oryx population, in the October-November months, but after chemical immobilization and shaving the skin areas, no subcutaneous or cutaneous lesion was observed, leading to say that external observation is not sufficient and those reported cases could have been mistakenly attributed to hypodermosis while they were not and might simply be related to annual winter moulting.

Lice

Twenty seven cases were reported in Oman.

Myasis

One collection in Oman reported 17 cases. In the UAE, one collection reported 2 cases of myasis while another case in another collection was specifically attributed to Chrysomya bezziana.

Mange

Fifty two cases of mange were reported in Oman, and one case in the UAE.

Ticks

Ticks were observed on 16 Arabian oryx in Bahrain, 35 in Oman (Hyalomma sp.), 5 in Saudi Arabia (Hyalomma dromaderii, H. schulzei) and 5 in the UAE.

Bahrain also reported 7 fatal cases but we don’t know whether those animals died of tick infestation or if ticks were found on dead animals that died due to unrelated causes.

Toxoplasmosis

One abortion due to Toxoplasma gondii was reported in one collection in the UAE. No further details were provided.

Fungal Diseases

A collection in the UAE declared culturing Mucor sp and Rhizopus sp. with no further details, both fungus are ubiquitous mold species.
6.4 Other Pathologies

Metabolic Diseases

No cases of metabolic diseases were reported.

Nutritional Disorders

“Nutritional disorder” usually refers to a disease following an excess or a lack of certain nutrients, such as hypovitaminosis, etc. There were several reports falling under this category: Oman reported 5 bloated animals with one death.

6 cases of “nutritional disorder” were reported in a second collection in Oman with no mention of what the disorder was.

One collection in the UAE reported one case of malnutrition and 4 cases of diarrhea.

Ruminal Acidosis

Acidosis was reported to cause the death of 5 Oryx in one collection in the UAE.

Stress Myopathy

Two collections in the UAE reported 5 cases and 2 fatalities, one collection in Oman reported one death out of 3 cases.

Trauma

Bahrain: 3 unspecified with no mortality.

Oman: 48 Oryx affected, 22 deaths.

Saudi Arabia: 4 animals with fractures. 2 of them died.

UAE: 71 Oryx were affected by trauma, causing 22 deaths due to fight, 2 due to stress, and 21 were not specified.

Reproductive Tract Disorders

In the UAE, one collection reported 2 cases of foetal mummification. Another collection reported 3 causalties without further details.

- Uterine inertia
 No cases were reported.

- Dystocia
 In Oman 2 cases were reported with no causalties on the dams, and the UAE reported 11 cases of dystocia out of 8 were fatal.

- Abortion
 One case of full term abortion was reported in one collection in the UAE due to Toxoplasma gondii.

- Retained Placenta
 No cases of retained placenta were reported from the range states.

Foreign Bodies

Sixteen cases of digestive foreign bodies were reported across the UAE, mentioning all sorts of plastic material including shopping bags and ropes. It is assumed that they were all discovered during necropsy investigation but there is no confirmation on whether they were accidental findings or that they caused the death of the animals. One case of muscular foreign body was reported in the UAE, with no further details.

Skin Disease

Five cases of recurrent dermatitis were signaled in one collection in the UAE.

Mismothering

Two cases of mismothering were reported in Bahrain, 4 in Oman, 8 in the UAE. It is probable that the number of cases reported were dead calves. Details are lacking on whether the calves were suffering from a primary disorder causing weakness that induced the so called mismothering, or the mismothering happened in the first instance.

Old Age

Bahrain reported 8 deaths due to old age, while Oman had 39 cases, of which only 3 died. In the UAE, 13 animals were considered to be suffering from old age and 9 died because of it.

Neoplastic Disorder

One case of osteosarcoma was reported in the UAE.

Heatstroke

Heatstroke was mentioned as cause of death for 3 animals in one collection in the UAE.

Anesthetic Related

One animal died during general anesthesia. No further information was provided.

Unknown

Four animals have died of unknown reasons in Bahrain, 7 in Oman, 8 in the UAE.

Others

Five Oryx died due to predation by foxes in Oman, where “weakness” affected 7 oryx and killed 2.
6.5 Pathologies not reported in the survey

Paratuberculosis
No clinical cases were reported in the period. Two collections in the UAE tested serologically 33 and 10 Oryx out of 44 and 87 respectively, with no positivity. No further information was provided on the test used.

Q-fever
A collection holding 87 Oryx in the UAE tested 10 animals with no positive result. No further indications on the test were provided.

Q-fever is a globally spread disease whose presence in Arabian Oryx in the region was serologically assessed and confirmed in the past. A recent study (Chaber et al., 2012) mentioned 7 positive sera out of the 170 Arabian Oryx tested (4%).

Other
The following diseases were included in the questionnaire but no information was provided on them from respondents in the present survey:

- Anthrax
- Babesiosis
- Blackleg
- Blue tongue
- Botulism
- Caseous Lymphadenitis (Pseudotuberculosis)
- Chlamydiosis
- Leptospirosis
- Lyme disease
- Tetanus
- Leptospirosis
- Pasteurellosis
- PPR
- Rabies
- Rinderpest

7. PROPHYLACTIC PROCEDURES, ROUTINE MEDICATIONS AND VETERINARY TESTS

7.1 Vaccination
Quantitatively, Limited numbers of Arabian Oryx surveyed are vaccinated. Twenty eight percent (28%) of the surveyed Arabian oryx are vaccinated against Foot and Mouth disease and Enterotoxemia and 24% percent of them receive some sort of vaccination against PPR (FIG 7).

As expected, Oryx that are in the wild are left unvaccinated.

Figure 7 – Percentage of vaccinated Oryx in 2015 and vaccines used, on surveyed populations.
Out of the 31 sites where the Arabian Oryx is bred in captivity, three quarters are using FMD vaccine, two thirds PPR vaccine and half of them enterotoxaemia vaccine, the other vaccines are used in less than 5% of the captive bred sites.

Only strong vaccination protocols will confer levels of immunity compatible with herd protection. Such protocols must involve prior quality control of each batch of vaccine that will be used.

Considering the batches are tested and comply with their intended use, and the strain of the vaccines are compatible with the one circulating in the region, the protocols will mainly depend on whether the vaccine is live attenuated or inactive. Commercially available PPR, Capripox and Para-Tuberculosis vaccines fall under the first category while Foot-and-Mouth Disease, Enterotoxaemia, Pasteurellosis and CCPP are all inactivated vaccines.

Most collections that vaccinate are doing it on a yearly basis, which might be satisfactory for live vaccines, where only unvaccinated animals could be injected, but certainly not for FMD vaccines that require a second injection after 3 to 4 weeks followed by bi-annual booster.

- **PPR vaccines** are known to provide a long lasting immunity following a single injection in domestic species (Saravanan et al., 2010), (Bidjeh et al., 1994). The same might happen in this species unfortunately the basic epidemiological knowledge still remains undocumented, such as scientifically-sound evidence that the species is sensitive to the disease.

- **Capripox vaccines** are also thought to give a lifelong immunity. Sensitivity of the Arabian Oryx to the disease was established by (Greta et al., 1992). Only a very small number of Oryx are vaccinated against this disease in a region where the disease is enzootic.

- **FMD vaccines** do not confer long lasting immunity and must therefore be repeated very frequently. Added to the apparent high mortality this disease will induce in a herd of Oryx, this disease must be considered as an important threat.

- **Para-Tuberculosis** vaccination must correspond to a very specific case and must be done under strict veterinary control and supervision. It has been used by one single collection since this survey was initiated.

There is still a world of assumption and lack of scientific evidence in the field of wildlife species vaccination that should be addressed and organized at the regional level in order to develop effective control and/or eradication programs for infectious diseases. The effectiveness of vaccination for Arabian Oryx bred in captivity should be scientifically evaluated. The epidemiological role of the species for each of these diseases should also be studied and documented in international peer-reviewed journals.
7.2 Routine Veterinary Screening

None of the populations released into the wild undergo regular veterinary testing. Fecal analysis is the most performed test with 37% of the surveyed sites doing it. It is performed once a month in one site or every 3, 6 or 12 months for others. Figure 8 shows the veterinary tests carried out by surveyed sites to maintain the health of the Arabian Oryx populations.

The Brucellosis test is performed in a limited number of places, on statistically questionable populations. Only 22% of the “captive bred” sites and 10% of the “managed population” sites are carrying out some sort of Brucellosis surveillance. When done, it is done yearly and the Rose Bengal Test is the most used, cELISA coming second. Please refer to the “Brucellosis” paragraph in the “Reported Pathologies” chapter for more information.

Bovine Tuberculosis is assessed by intradermal test yearly in not more than four sites that are housing a total population of fifty Arabian Oryx. One other site mentioned testing not regularly or routinely, just to assess the situation. Nine animals were considered reactors and thirty two doubtful to the Single Intradermal Cervical Comparative Test (SICCT) (please refer to the bovine tuberculosis chapter for further information).

Three of those 4 sites are also investigating this disease by serological test and results were still pending at the date of the questionnaire.

Both Brucellosis and Bovine tuberculosis might affect people and they are enzootic in the region. Passive surveillance is less than adequate for those diseases, and active surveillance and proactivity are strongly recommended.

Paratuberculosis status is assessed yearly in 8.3 and 5.3% of captive bred and managed population sites respectively. No information was provided on the statistical significance of the tested population, but all results were negative. One site mentioned using Ziel-Neelsen stain and ELISA test for this purpose.

Q Fever was tested in 3 sites only. Haemoparasite, CBC, blood chemistry, “blood sample analysis” are also performed, sometimes on a yearly basis, sometimes on an ad-hoc basis.

Karyotype was performed at one site and is worth mentioning as some individuals showed Robertsonian translocation, as described by (Cribiu et al., 1991).
8. EPIDEMIOLOGICAL RISKS

Presence of other wild ungulate species in Arabian Oryx collections

Only one collection, having one site, mentioned housing no other wild ungulates. All the other sites are housing other wild ungulates species along with Arabian Oryx, in direct contact, in 37 sites. Twenty three sites are holding Sand Gazelles (Gazella marica) in direct contact with Arabian Oryx. The number of those gazelles ranged from 1 to thousands or were described as “numerous” and “plenty”. Eighteen sites are housing Mountain Gazelles (Gazella gazella) in direct contact with Arabian Oryx and sixteen sites are housing those three species in direct contact from each other. A long list of other ungulate species, sometime exotic, was also recorded, in more limited number, and in fewer collections.

The vast majority of sites (63%) were reported to be 1 to 15km away from domestic livestock (Figure 9), 21% of the sites are located less than 500m to livestock, 7% of the sites are 500 to 1000m away from livestock.

On the other hand, only 3.5% of the total numbers of sites are further than 15km away from domestic livestock. None of the sites mentioned having a direct or a close contact with livestock.

It is not certain how those distances were calculated and reported as there are observations of Arabian Oryx separated from livestock by one single fence, making direct contact possible, without any fenced buffer zone. It is assumed that the distance was measured between the place where herds are most usually seen (usually around feeders and water troughs), without considering that the Oryx might move in all parts of the provided area, especially when patrolling the perimeter fence.

Collections or sites open to the public

Eleven sites are open to public and 46 are privately owned with no public access. Out of the 11 sites open to the public, 6 are captive bred populations and 5 are managed populations.
Control and eradication of infectious animal diseases (including zoonotic diseases) should be part of national and international plans. Wild animal populations can represent a reservoir for certain diseases. Veterinarians and collection managers are encouraged to share information, and help increase the understanding and knowledge of those diseases affecting wild animal collections whenever possible. Timely information sharing can help take appropriate decisions and avoid reactive emergency scenarios such as mass culling and ineffective disease control strategies. More data on epidemiological aspects of this species are needed to reduce the risks associated with diseases.

Based on the results of the survey, some of the key recommendations for improved veterinary and herd management are provided in the section below.

- **Improving biosecurity measures**
 Only fenced buffer zones empty of ungulates can be considered effective to prevent contact between Oryx, other wildlife and livestock.
 Introducing an animal into a collection, whether it is an Oryx or a different species, that might share common diseases with Oryx without first conducting a minimum health assessment should be avoided. If such introduction must be done, the risks must be studied and taken into consideration.

9. RECOMMENDATIONS

- **Animal exchanges for genetic diversity and resilience**
 Assess, improve and promote the genetic diversity of Arabian Oryx collections to enhance resilience, for instance by exchanging males of different lineages but with compatible health status.

- **Assessing the health status of the herd**
 The health status of a herd has to be evaluated for a percentage of animals that represents the herd as a whole. List and prioritise the pathogens that require control and eradication. Unless the different ungulate species are well separated within a collection, they will most likely share the same pathogens. Notify listed pathogens to an official body (OIE, national institutions, etc.).
• Reduce the gaps in basic veterinary knowledge of this species

The epidemiological role the Arabian Oryx plays in ungulate infectious diseases is usually unknown or at best unclear in the region. The parameters of laboratory tests used for this species are not evaluated and the effectiveness and the side effects of vaccines, sometimes used in official control plans, are not assessed for the Arabian Oryx.

Those three key aspects suffer an important lack of scientifically sound information and as of today’s date, we still rely mainly on assumptions. There is a clear discrepancy at the regional level between the efforts put in the conservation of this species, the resources allocated to breed the Arabian Oryx in captivity, and the amount of scientifically sound publications in the field of veterinary epidemiology for this species. Only peer-reviewed publications can guarantee both the quality of the work done, the long-term memory and the spread of information within the scientific community, in order to form and advise the development of effective veterinary protocols that ensure the welfare and conservation of the species in the long-term.

ACKNOWLEDGEMENTS

We express our deep and continued gratitude to H.E. Razan Khalifa Al Mubarak, Secretary General of EAD, Dr. Shaikha Al Dhaheri, Executive Director of TMBS at EAD, and Dr. Salim Javed, Acting Director of Terrestrial Biodiversity at EAD, for their support and encouragement to conduct this regional survey.

We would like to thank all the collections across the range states listed below that have dedicated their time and expertise to take part in this survey. Without their valuable input and information sharing this edition of the disease report would not have been possible:

• Bahrain: Supreme Council for Environment
• Jordan: Aqaba Special Economic Zone Authority (Wadi Rum Protected Area)
• Royal Society for Nature Conservation (Shumari Wildlife Reserve)
• Oman: Diwan of Royal Court (Office for Conservation of the Environment)
• Ministry of Environment and Climate Affairs, Oman
• Saudi Arabia: Saudi Wildlife Authority
• United Arab Emirates: Management of Nature Conservation; Office of H.H. Sheikhha Fatima bint Mubarak; Office of H.H. Sheikh Mansour bin Zayed Al Nahyan
• Environment Agency - Abu Dhabi (EAD)
• Warsan Wildlife Division
• Zoo & Aquarium Public Institution Al Ain
• Al Alben Trophy Hunting Desert Safari; Tourism Development Investment Company (Sir Bani Yas Island)
• Dubai Desert Conservation Reserve
• Wadi Al Safa Wildlife Centre
• Nakhili Wildlife
• Breeding Centre for Endangered Arabian Wildlife - Sharjah
• Al Bustan Zoological Centre
• Al Marmoum Reserve
• Yemen: Environment Public Authority (San'a Zoo)

Reduce the gaps in basic veterinary knowledge of this species

The epidemiological role the Arabian Oryx plays in ungulate infectious diseases is usually unknown or at best unclear in the region. The parameters of laboratory tests used for this species are not evaluated and the effectiveness and the side effects of vaccines, sometimes used in official control plans, are not assessed for the Arabian Oryx.

Those three key aspects suffer an important lack of scientifically sound information and as of today’s date, we still rely mainly on assumptions. There is a clear discrepancy at the regional level between the efforts put in the conservation of this species, the resources allocated to breed the Arabian Oryx in captivity, and the amount of scientifically sound publications in the field of veterinary epidemiology for this species. Only peer-reviewed publications can guarantee both the quality of the work done, the long-term memory and the spread of information within the scientific community, in order to form and advise the development of effective veterinary protocols that ensure the welfare and conservation of the species in the long-term.
REFERENCES

